Bayesian Model Fusion for Forecasting Civil Unrest

نویسندگان

  • Andrew Hoegh
  • Scotland Leman
  • Parang Saraf
  • Naren Ramakrishnan
چکیده

With the rapid rise in social media, alternative news sources, and blogs, ordinary citizens have become information producers as much as information consumers. Highly charged prose, images, and videos spread virally, and stoke the embers of social unrest by alerting fellow citizens to relevant happenings and spurring them into action. We are interested in using Big Data approaches to generate forecasts of civil unrest from open source indicators. The heterogeneous nature of data coupled with the rich and diverse origins of civil unrest call for a multi-model approach to such forecasting. We present a modular approach wherein a collection of models use overlapping sources of data to independently forecast protests. Fusion of alerts into one single alert stream becomes a key system informatics problem and we present a statistical framework to accomplish such fusion. Given an alert from one of the numerous models, the decision space for fusion has two possibilities: i) release the alert or ii) suppress the alert. Using a Bayesian decision theoretic framework, we present a fusion approach for releasing or suppressing alerts. The resulting system enables real-time decisions and more importantly tuning of precision and recall.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

STAPLE: Spatio-Temporal Precursor Learning for Event Forecasting

Large-scale societal events such as civil unrest movements occur due to a variety of factors including economics, politics, and security. Societal event detection can be modeled as a system of inter-connected locations, where each location is recording a set of time-dependent observations. In order to detect event occurrence and automatically reconstruct the precursors and signals, it is essent...

متن کامل

Planned Protest Modeling in News and Social Media

Civil unrest (protests, strikes, and “occupy” events) is a common occurrence in both democracies and authoritarian regimes. The study of civil unrest is a key topic for political scientists as it helps capture an important mechanism by which citizenry express themselves. In countries where civil unrest is lawful, qualitative analysis has revealed that more than 75% of the protests are planned, ...

متن کامل

Forecasting Social Unrest Using Activity Cascades

Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and polic...

متن کامل

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Technometrics

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2015